SEED Research & Announcements Blogs Publications Open Source Careers Contact Us Research & Announcements Blogs Publications Open Source Careers Contact Us

Eurographics 2023: A Comprehensive Review of Data-Driven Co-Speech Gesture Generation

This research paper was accepted for publication by the 44th Annual Conference of the European Association for Computer Graphics.

Authors: Simbarashe Nyatsanga, Taras Kucherenko, Chaitanya Ahuja, Gustav Eje Henter, Michael Neff.

A Comprehensive Review of Data-Driven Co-Speech Gesture Generation

Download the full research paper. (1 MB PDF)

Gestures that accompany speech are an essential part of natural and efficient embodied human communication.

The automatic generation of such co-speech gestures is a long-standing problem in computer animation and is considered an enabling technology in film, games, virtual social spaces, and for interaction with social robots. The problem is made challenging by the idiosyncratic and non-periodic nature of human co-speech gesture motion, and by the great diversity of communicative functions that gestures encompass.

Gesture generation has seen surging interest recently, owing to the emergence of more and larger datasets of human gesture motion, combined with strides in deep-learning-based generative models, that benefit from the growing availability of data. This review article summarizes co-speech gesture generation research, with a particular focus on deep generative models.

First, we articulate the theory describing human gesticulation and how it complements speech. Next, we briefly discuss rule-based and classical statistical gesture synthesis, before delving into deep learning approaches. We employ the choice of input modalities as an organizing principle, examining systems that generate gestures from audio, text, and non-linguistic input. We also chronicle the evolution of the related training data sets in terms of size, diversity, motion quality, and collection method.

Finally, we identify key research challenges in gesture generation, including data availability and quality; producing human-like motion; grounding the gesture in the co-occurring speech in interaction with other speakers and in the environment; performing gesture evaluation; and integration of gesture synthesis into applications. We highlight recent approaches to tackling the various key challenges, as well as the limitations of these approaches, and point toward areas of future development.

Related News

Gigi Lightning Talks

SEED
Sep 26, 2024
SEED brought together developers to show off their prowess using the Gigi rapid prototyping platform for real-time rendering.

SEED's Adventure in Gameplay Innovation

SEED
Sep 13, 2024
SEED is branching out into the world of game mechanics, storytelling magic, and interactive wonders.

Objective Metrics for Evalutating Gesture Generation are Almost Useless

SEED
Sep 10, 2024
How do you evaluate something as subjective and ephemeral as human body language for natural and lifelike qualities?