SEED Research & Announcements Blogs Publications Open Source Careers Contact Us Research & Announcements Blogs Publications Open Source Careers Contact Us

Improving Generalization in Game Agents with Data Augmentation in Imitation Learning

This presentation was delivered at the IEEE World Congress on Computational Intelligence, which was held on 5 July 2024 in Yokohama, Japan.

Authors: Derek Yadgaroff, Alessandro Sestini, Konrad Tollmar, Ayça Özçelikkale, and Linus Gisslén. Presented by Alessandro Sestini.

How do we efficiently train in-game AI agents to handle new situations that they haven’t been trained on?

Imitation learning is an effective approach for training game-playing agents and, consequently, for efficient game production. However, generalization – the ability to perform well in related but unseen scenarios – is an essential requirement that remains an unsolved challenge for game AI. Generalization is difficult for imitation learning agents because it requires the algorithm to take meaningful actions outside of the training distribution. 

In this paper, we propose a solution to this challenge. Inspired by the success of data augmentation in supervised learning, we augment the training data so the distribution of states and actions in the dataset better represents the real state-action distribution. 

This study evaluates methods for combining and applying data augmentations to improve the generalization of imitation learning agents. It also provides a performance benchmark of these augmentations across several 3D environments. These results demonstrate that data augmentation is a promising framework for improving generalization in imitation learning agents.

Download the research paper (PDF 1.6 MB).

Download the slide deck (PDF 10 MB).

Related News

Gigi Lightning Talks

SEED
Sep 26, 2024
SEED brought together developers to show off their prowess using the Gigi rapid prototyping platform for real-time rendering.

SEED's Adventure in Gameplay Innovation

SEED
Sep 13, 2024
SEED is branching out into the world of game mechanics, storytelling magic, and interactive wonders.

Objective Metrics for Evalutating Gesture Generation are Almost Useless

SEED
Sep 10, 2024
How do you evaluate something as subjective and ephemeral as human body language for natural and lifelike qualities?